Aggregated Deep Local Features for Remote Sensing Image Retrieval

Created by MG96

External Public cs.CV

Statistics

Citations
67
References
65
Last updated
Loading...
Authors

Raffaele Imbriaco Clint Sebastian Egor Bondarev Peter H. N. de With
Project Resources

Name Type Source Actions
ArXiv Paper Paper arXiv
Semantic Scholar Paper Semantic Scholar
Abstract

Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.

Note:

No note available for this project.

No note available for this project.
Contact:

No contact available for this project.

No contact available for this project.