Efficient Golf Ball Detection and Tracking Based on Convolutional Neural Networks and Kalman Filter

Created by MG96

External Public cs.CV

Statistics

Citations
14
References
44
Last updated
Loading...
Authors

Tianxiao Zhang Xiaohan Zhang Yiju Yang Zongbo Wang Guanghui Wang
Project Resources

Name Type Source Actions
ArXiv Paper Paper arXiv
Semantic Scholar Paper Semantic Scholar
GitHub Repository Code Repository GitHub
Abstract

This paper focuses on the problem of online golf ball detection and tracking from image sequences. An efficient real-time approach is proposed by exploiting convolutional neural networks (CNN) based object detection and a Kalman filter based prediction. Five classical deep learning-based object detection networks are implemented and evaluated for ball detection, including YOLO v3 and its tiny version, YOLO v4, Faster R-CNN, SSD, and RefineDet. The detection is performed on small image patches instead of the entire image to increase the performance of small ball detection. At the tracking stage, a discrete Kalman filter is employed to predict the location of the ball and a small image patch is cropped based on the prediction. Then, the object detector is utilized to refine the location of the ball and update the parameters of Kalman filter. In order to train the detection models and test the tracking algorithm, a collection of golf ball dataset is created and annotated. Extensive comparative experiments are performed to demonstrate the effectiveness and superior tracking performance of the proposed scheme.

Note:

No note available for this project.

No note available for this project.
Contact:

No contact available for this project.

No contact available for this project.