Investigating the Role of Feed-Forward Networks in Transformers Using Parallel Attention and Feed-Forward Net Design

Created by MG96

External Public cs.CL

Statistics

Citations
0
References
0
Last updated
Loading...
Authors

Shashank Sonkar Richard G. Baraniuk
Project Resources

Name Type Source Actions
ArXiv Paper Paper arXiv
Abstract

This paper investigates the key role of Feed-Forward Networks (FFNs) in transformer models by utilizing the Parallel Attention and Feed-Forward Net Design (PAF) architecture, and comparing it to their Series Attention and Feed-Forward Net Design (SAF) counterparts. Central to the effectiveness of PAF are two main assumptions regarding the FFN block and the attention block within a layer: 1) the primary function of the FFN block is to maintain isotropy among token embeddings and prevent their degeneration, and 2) the residual norm computed in the attention block is substantially smaller than the input token embedding norm. To empirically validate these assumptions, we train PAF variants of two large language models (RoBERTa-large and bert-large-uncased). Our results demonstrate that both assumptions hold true in the PAF design. This study contributes to a deeper understanding of the roles and interactions between FFNs and self-attention mechanisms in transformer architectures.

Note:

No note available for this project.

No note available for this project.
Contact:

No contact available for this project.

No contact available for this project.