Fast MRI for All: Bridging Equity Gaps via Training without Raw Data Access
Created by MG96
Statistics
Citations
0References
70Last updated
Loading...Authors
Abstract
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Though PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. A key challenge is generalization to underrepresented pathologies or populations, noted in multiple studies, with fine-tuning on target populations suggested for improvement. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and underserved areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates output quality with a compressibility-based approach while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show CUPID achieves similar quality to established PD-DL training that requires k-space data while outperforming compressed sensing (CS) and diffusion-based generative methods. We further demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden. As an approach that radically deviates from existing strategies, CUPID presents an opportunity to provide equitable access to fast MRI for underserved populations in an attempt to reduce the inequalities associated with this expensive imaging modality.