Projects List

Sort

Category

Resources

Parameter-free structure-texture i…
Updated:
March 17, 2025
43
5
External Public

In this work, we propose a parameter-free and efficient method to tackle the structure-texture image decomposition problem. In particular, we present a neural network LPR-NET based on the unrolling of the Low Patch Rank model. On the one hand, this allows us to automatically learn parameters from data, and on the other hand to be computationally faster while obtaining qualitatively similar results compared to traditional iterative model-based methods. Moreover, despite being trained on synthetic images, numerical experiments show the ability of our network to generalize well when applied to natural images.

Read More cs.CV cs.NA More categories
TriDF: Triplane-Accelerated Densit…
Updated:
March 17, 2025
0
0
External Public

Remote sensing novel view synthesis (NVS) offers significant potential for 3D interpretation of remote sensing scenes, with important applications in urban planning and environmental monitoring. However, remote sensing scenes frequently lack sufficient multi-view images due to acquisition constraints. While existing NVS methods tend to overfit when processing limited input views, advanced few-shot NVS methods are computationally intensive and perform sub-optimally in remote sensing scenes. This paper presents TriDF, an efficient hybrid 3D representation for fast remote sensing NVS from as few as 3 input views. Our approach decouples color and volume density information, modeling them independently to reduce the computational burden on implicit radiance fields and accelerate reconstruction. We explore the potential of the triplane representation in few-shot NVS tasks by mapping high-frequency color information onto this compact structure, and the direct optimization of feature planes significantly speeds up convergence. Volume density is modeled as continuous density fields, incorporating reference features from neighboring views through image-based rendering to compensate for limited input data. Additionally, we introduce depth-guided optimization based on point clouds, which effectively mitigates the overfitting problem in few-shot NVS. Comprehensive experiments across multiple remote sensing scenes demonstrate that our hybrid representation achieves a 30x speed increase compared to NeRF-based methods, while simultaneously improving rendering quality metrics over advanced few-shot methods (7.4% increase in PSNR, 12.2% in SSIM, and 18.7% in LPIPS). The code is publicly available at https://github.com/kanehub/TriDF

Read More cs.CV
STEP: Simultaneous Tracking and Es…
Updated:
March 17, 2025
0
0
External Public

We introduce STEP, a novel framework utilizing Transformer-based discriminative model prediction for simultaneous tracking and estimation of pose across diverse animal species and humans. We are inspired by the fact that the human brain exploits spatiotemporal continuity and performs concurrent localization and pose estimation despite the specialization of brain areas for form and motion processing. Traditional discriminative models typically require predefined target states for determining model weights, a challenge we address through Gaussian Map Soft Prediction (GMSP) and Offset Map Regression Adapter (OMRA) Modules. These modules remove the necessity of keypoint target states as input, streamlining the process. Our method starts with a known target state initialized through a pre-trained detector or manual initialization in the initial frame of a given video sequence. It then seamlessly tracks the target and estimates keypoints of anatomical importance as output for subsequent frames. Unlike prevalent top-down pose estimation methods, our approach doesn't rely on per-frame target detections due to its tracking capability. This facilitates a significant advancement in inference efficiency and potential applications. We train and validate our approach on datasets encompassing diverse species. Our experiments demonstrate superior results compared to existing methods, opening doors to various applications, including but not limited to action recognition and behavioral analysis.

Read More cs.CV
Reliable and Efficient Amortized M…
Updated:
March 17, 2025
0
0
External Public

Comprehensive evaluations of language models (LM) during both development and deployment phases are necessary because these models possess numerous capabilities (e.g., mathematical reasoning, legal support, or medical diagnostic) as well as safety risks (e.g., racial bias, toxicity, or misinformation). The average score across a wide range of benchmarks provides a signal that helps guide the use of these LMs in practice. Currently, holistic evaluations are costly due to the large volume of benchmark questions, making frequent evaluations impractical. A popular attempt to lower the cost is to compute the average score on a subset of the benchmark. This approach, unfortunately, often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset. Item response theory (IRT) was designed to address this challenge, providing a reliable measurement by careful controlling for question difficulty. Unfortunately, question difficulty is expensive to estimate. Facing this challenge, we train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost. In addition, we leverage this difficulty predictor to further improve the evaluation efficiency through training a question generator given a difficulty level. This question generator is essential in adaptive testing, where, instead of using a random subset of the benchmark questions, informative questions are adaptively chosen based on the current estimation of LLM performance. Experiments on 22 common natural language benchmarks and 172 LMs show that this approach is more reliable and efficient compared to current common practice.

Read More cs.CL cs.AI More categories
LEAVS: An LLM-based Labeler for Ab…
Updated:
March 17, 2025
0
0
External Public

Extracting structured labels from radiology reports has been employed to create vision models to simultaneously detect several types of abnormalities. However, existing works focus mainly on the chest region. Few works have been investigated on abdominal radiology reports due to more complex anatomy and a wider range of pathologies in the abdomen. We propose LEAVS (Large language model Extractor for Abdominal Vision Supervision). This labeler can annotate the certainty of presence and the urgency of seven types of abnormalities for nine abdominal organs on CT radiology reports. To ensure broad coverage, we chose abnormalities that encompass most of the finding types from CT reports. Our approach employs a specialized chain-of-thought prompting strategy for a locally-run LLM using sentence extraction and multiple-choice questions in a tree-based decision system. We demonstrate that the LLM can extract several abnormality types across abdominal organs with an average F1 score of 0.89, significantly outperforming competing labelers and humans. Additionally, we show that extraction of urgency labels achieved performance comparable to human annotations. Finally, we demonstrate that the abnormality labels contain valuable information for training a single vision model that classifies several organs as normal or abnormal. We release our code and structured annotations for a public CT dataset containing over 1,000 CT volumes.

Read More eess.IV cs.AI cs.CV
PERC: a suite of software tools fo…
Updated:
March 17, 2025
0
0
External Public

Ease of access to data, tools and models expedites scientific research. In structural biology there are now numerous open repositories of experimental and simulated datasets. Being able to easily access and utilise these is crucial for allowing researchers to make optimal use of their research effort. The tools presented here are useful for collating existing public cryoEM datasets and/or creating new synthetic cryoEM datasets to aid the development of novel data processing and interpretation algorithms. In recent years, structural biology has seen the development of a multitude of machine-learning based algorithms for aiding numerous steps in the processing and reconstruction of experimental datasets and the use of these approaches has become widespread. Developing such techniques in structural biology requires access to large datasets which can be cumbersome to curate and unwieldy to make use of. In this paper we present a suite of Python software packages which we collectively refer to as PERC (profet, EMPIARreader and CAKED). These are designed to reduce the burden which data curation places upon structural biology research. The protein structure fetcher (profet) package allows users to conveniently download and cleave sequences or structures from the Protein Data Bank or Alphafold databases. EMPIARreader allows lazy loading of Electron Microscopy Public Image Archive datasets in a machine-learning compatible structure. The Class Aggregator for Key Electron-microscopy Data (CAKED) package is designed to seamlessly facilitate the training of machine learning models on electron microscopy data, including electron-cryo-microscopy-specific data augmentation and labelling. These packages may be utilised independently or as building blocks in workflows. All are available in open source repositories and designed to be easily extensible to facilitate more advanced workflows if required.

Read More cs.LG cs.CE q-bio.BM
Edit Transfer: Learning Image Edit…
Updated:
March 17, 2025
0
0
External Public

We introduce a new setting, Edit Transfer, where a model learns a transformation from just a single source-target example and applies it to a new query image. While text-based methods excel at semantic manipulations through textual prompts, they often struggle with precise geometric details (e.g., poses and viewpoint changes). Reference-based editing, on the other hand, typically focuses on style or appearance and fails at non-rigid transformations. By explicitly learning the editing transformation from a source-target pair, Edit Transfer mitigates the limitations of both text-only and appearance-centric references. Drawing inspiration from in-context learning in large language models, we propose a visual relation in-context learning paradigm, building upon a DiT-based text-to-image model. We arrange the edited example and the query image into a unified four-panel composite, then apply lightweight LoRA fine-tuning to capture complex spatial transformations from minimal examples. Despite using only 42 training samples, Edit Transfer substantially outperforms state-of-the-art TIE and RIE methods on diverse non-rigid scenarios, demonstrating the effectiveness of few-shot visual relation learning.

Read More cs.CV
SMPR: A structure-enhanced multimo…
Updated:
March 17, 2025
0
0
External Public

Repositioning drug-disease relationships has always been a hot field of research. However, actual cases of biologically validated drug relocation remain very limited, and existing models have not yet fully utilized the structural information of the drug. Furthermore, most repositioning models are only used to complete the relationship matrix, and their practicality is poor when dealing with drug cold start problems. This paper proposes a structure-enhanced multimodal relationship prediction model (SMRP). SMPR is based on the SMILE structure of the drug, using the Mol2VEC method to generate drug embedded representations, and learn disease embedded representations through heterogeneous network graph neural networks. Ultimately, a drug-disease relationship matrix is constructed. In addition, to reduce the difficulty of users' use, SMPR also provides a cold start interface based on structural similarity based on reposition results to simply and quickly predict drug-related diseases. The repositioning ability and cold start capability of the model are verified from multiple perspectives. While the AUC and ACUPR scores of repositioning reach 99% and 61% respectively, the AUC of cold start achieve 80%. In particular, the cold start Recall indicator can reach more than 70%, which means that SMPR is more sensitive to positive samples. Finally, case analysis is used to verify the practical value of the model and visual analysis directly demonstrates the improvement of the structure to the model. For quick use, we also provide local deployment of the model and package it into an executable program.

Read More cs.LG
MagicDistillation: Weak-to-Strong …
Updated:
March 17, 2025
0
0
External Public

Fine-tuning open-source large-scale VDMs for the portrait video synthesis task can result in significant improvements across multiple dimensions, such as visual quality and natural facial motion dynamics. Despite their advancements, how to achieve step distillation and reduce the substantial computational overhead of large-scale VDMs remains unexplored. To fill this gap, this paper proposes Weak-to-Strong Video Distillation (W2SVD) to mitigate both the issue of insufficient training memory and the problem of training collapse observed in vanilla DMD during the training process. Specifically, we first leverage LoRA to fine-tune the fake diffusion transformer (DiT) to address the out-of-memory issue. Then, we employ the W2S distribution matching to adjust the real DiT's parameter, subtly shifting it toward the fake DiT's parameter. This adjustment is achieved by utilizing the weak weight of the low-rank branch, effectively alleviate the conundrum where the video synthesized by the few-step generator deviates from the real data distribution, leading to inaccuracies in the KL divergence approximation. Additionally, we minimize the distance between the fake data distribution and the ground truth distribution to further enhance the visual quality of the synthesized videos. As experimentally demonstrated on HunyuanVideo, W2SVD surpasses the standard Euler, LCM, DMD and even the 28-step standard sampling in FID/FVD and VBench in 1/4-step video synthesis. The project page is in https://w2svd.github.io/W2SVD/.

Read More cs.CV
Do you understand epistemic uncert…
Updated:
March 17, 2025
0
0
External Public

Quantifying model uncertainty is critical for understanding prediction reliability, yet distinguishing between aleatoric and epistemic uncertainty remains challenging. We extend recent work from classification to regression to provide a novel frequentist approach to epistemic and aleatoric uncertainty estimation. We train models to generate conditional predictions by feeding their initial output back as an additional input. This method allows for a rigorous measurement of model uncertainty by observing how prediction responses change when conditioned on the model's previous answer. We provide a complete theoretical framework to analyze epistemic uncertainty in regression in a frequentist way, and explain how it can be exploited in practice to gauge a model's uncertainty, with minimal changes to the original architecture.

Read More stat.ML cs.LG
RainScaleGAN: a Conditional Genera…
Updated:
March 17, 2025
0
0
External Public

To this day, accurately simulating local-scale precipitation and reliably reproducing its distribution remains a challenging task. The limited horizontal resolution of Global Climate Models is among the primary factors undermining their skill in this context. The physical mechanisms driving the onset and development of precipitation, especially in extreme events, operate at spatio-temporal scales smaller than those numerically resolved, thus struggling to be captured accurately. In order to circumvent this limitation, several downscaling approaches have been developed over the last decades to address the discrepancy between the spatial resolution of models output and the resolution required by local-scale applications. In this paper, we introduce RainScaleGAN, a conditional deep convolutional Generative Adversarial Network (GAN) for precipitation downscaling. GANs have been effectively used in image super-resolution, an approach highly relevant for downscaling tasks. RainScaleGAN's capabilities are tested in a perfect-model setup, where the spatial resolution of a precipitation dataset is artificially degraded from 0.25$^{\circ}\times$0.25$^{\circ}$ to 2$^{\circ}\times$2$^\circ$, and RainScaleGAN is used to restore it. The developed model outperforms one of the leading precipitation downscaling method found in the literature. RainScaleGAN not only generates a synthetic dataset featuring plausible high-resolution spatial patterns and intensities, but also produces a precipitation distribution with statistics closely mirroring those of the ground-truth dataset. Given that RainScaleGAN's approach is agnostic with respect to the underlying physics, the method has the potential to be applied to other physical variables such as surface winds or temperature.

Read More physics.ao-ph cs.AI cs.LG
Integrating AI for Human-Centric B…
Updated:
March 17, 2025
0
0
External Public

Despite advancements in Computer-Aided Diagnosis (CAD) systems, breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Recent breakthroughs in Artificial Intelligence (AI) have shown significant promise in development of advanced Deep Learning (DL) architectures for breast cancer diagnosis through mammography. In this context, the paper focuses on the integration of AI within a Human-Centric workflow to enhance breast cancer diagnostics. Key challenges are, however, largely overlooked such as reliance on detailed tumor annotations and susceptibility to missing views, particularly during test time. To address these issues, we propose a hybrid, multi-scale and multi-view Swin Transformer-based framework (MSMV-Swin) that enhances diagnostic robustness and accuracy. The proposed MSMV-Swin framework is designed to work as a decision-support tool, helping radiologists analyze multi-view mammograms more effectively. More specifically, the MSMV-Swin framework leverages the Segment Anything Model (SAM) to isolate the breast lobe, reducing background noise and enabling comprehensive feature extraction. The multi-scale nature of the proposed MSMV-Swin framework accounts for tumor-specific regions as well as the spatial characteristics of tissues surrounding the tumor, capturing both localized and contextual information. The integration of contextual and localized data ensures that MSMV-Swin's outputs align with the way radiologists interpret mammograms, fostering better human-AI interaction and trust. A hybrid fusion structure is then designed to ensure robustness against missing views, a common occurrence in clinical practice when only a single mammogram view is available.

Read More eess.IV cs.AI cs.CV
UniHOPE: A Unified Approach for Ha…
Updated:
March 17, 2025
0
0
External Public

Estimating the 3D pose of hand and potential hand-held object from monocular images is a longstanding challenge. Yet, existing methods are specialized, focusing on either bare-hand or hand interacting with object. No method can flexibly handle both scenarios and their performance degrades when applied to the other scenario. In this paper, we propose UniHOPE, a unified approach for general 3D hand-object pose estimation, flexibly adapting both scenarios. Technically, we design a grasp-aware feature fusion module to integrate hand-object features with an object switcher to dynamically control the hand-object pose estimation according to grasping status. Further, to uplift the robustness of hand pose estimation regardless of object presence, we generate realistic de-occluded image pairs to train the model to learn object-induced hand occlusions, and formulate multi-level feature enhancement techniques for learning occlusion-invariant features. Extensive experiments on three commonly-used benchmarks demonstrate UniHOPE's SOTA performance in addressing hand-only and hand-object scenarios. Code will be released on https://github.com/JoyboyWang/UniHOPE_Pytorch.

Read More cs.CV
On Local Posterior Structure in De…
Updated:
March 17, 2025
0
0
External Public

Bayesian Neural Networks (BNNs) often improve model calibration and predictive uncertainty quantification compared to point estimators such as maximum-a-posteriori (MAP). Similarly, deep ensembles (DEs) are also known to improve calibration, and therefore, it is natural to hypothesize that deep ensembles of BNNs (DE-BNNs) should provide even further improvements. In this work, we systematically investigate this across a number of datasets, neural network architectures, and BNN approximation methods and surprisingly find that when the ensembles grow large enough, DEs consistently outperform DE-BNNs on in-distribution data. To shine light on this observation, we conduct several sensitivity and ablation studies. Moreover, we show that even though DE-BNNs outperform DEs on out-of-distribution metrics, this comes at the cost of decreased in-distribution performance. As a final contribution, we open-source the large pool of trained models to facilitate further research on this topic.

Read More cs.LG stat.ML
LLM-Match: An Open-Sourced Patient…
Updated:
March 17, 2025
0
0
External Public

Patient matching is the process of linking patients to appropriate clinical trials by accurately identifying and matching their medical records with trial eligibility criteria. We propose LLM-Match, a novel framework for patient matching leveraging fine-tuned open-source large language models. Our approach consists of four key components. First, a retrieval-augmented generation (RAG) module extracts relevant patient context from a vast pool of electronic health records (EHRs). Second, a prompt generation module constructs input prompts by integrating trial eligibility criteria (both inclusion and exclusion criteria), patient context, and system instructions. Third, a fine-tuning module with a classification head optimizes the model parameters using structured prompts and ground-truth labels. Fourth, an evaluation module assesses the fine-tuned model's performance on the testing datasets. We evaluated LLM-Match on four open datasets, n2c2, SIGIR, TREC 2021, and TREC 2022, using open-source models, comparing it against TrialGPT, Zero-Shot, and GPT-4-based closed models. LLM-Match outperformed all baselines.

Read More cs.CL cs.AI cs.LG
Graph Generative Models Evaluation…
Updated:
March 17, 2025
37
1
External Public

In recent years, numerous graph generative models (GGMs) have been proposed. However, evaluating these models remains a considerable challenge, primarily due to the difficulty in extracting meaningful graph features that accurately represent real-world graphs. The traditional evaluation techniques, which rely on graph statistical properties like node degree distribution, clustering coefficients, or Laplacian spectrum, overlook node features and lack scalability. There are newly proposed deep learning-based methods employing graph random neural networks or contrastive learning to extract graph features, demonstrating superior performance compared to traditional statistical methods, but their experimental results also demonstrate that these methods do not always working well across different metrics. Although there are overlaps among these metrics, they are generally not interchangeable, each evaluating generative models from a different perspective. In this paper, we propose a novel method that leverages graph masked autoencoders to effectively extract graph features for GGM evaluations. We conduct extensive experiments on graphs and empirically demonstrate that our method can be more reliable and effective than previously proposed methods across a number of GGM evaluation metrics, such as "Fr\'echet Distance (FD)" and "MMD Linear". However, no single method stands out consistently across all metrics and datasets. Therefore, this study also aims to raise awareness of the significance and challenges associated with GGM evaluation techniques, especially in light of recent advances in generative models.

Read More cs.LG
Don't Judge Before You CLIP: A Uni…
Updated:
March 17, 2025
0
0
External Public

Visual perceptual tasks aim to predict human judgment of images (e.g., emotions invoked by images, image quality assessment). Unlike objective tasks such as object/scene recognition, perceptual tasks rely on subjective human assessments, making its data-labeling difficult. The scarcity of such human-annotated data results in small datasets leading to poor generalization. Typically, specialized models were designed for each perceptual task, tailored to its unique characteristics and its own training dataset. We propose a unified architectural framework for solving multiple different perceptual tasks leveraging CLIP as a prior. Our approach is based on recent cognitive findings which indicate that CLIP correlates well with human judgment. While CLIP was explicitly trained to align images and text, it implicitly also learned human inclinations. We attribute this to the inclusion of human-written image captions in CLIP's training data, which contain not only factual image descriptions, but inevitably also human sentiments and emotions. This makes CLIP a particularly strong prior for perceptual tasks. Accordingly, we suggest that minimal adaptation of CLIP suffices for solving a variety of perceptual tasks. Our simple unified framework employs a lightweight adaptation to fine-tune CLIP to each task, without requiring any task-specific architectural changes. We evaluate our approach on three tasks: (i) Image Memorability Prediction, (ii) No-reference Image Quality Assessment, and (iii) Visual Emotion Analysis. Our model achieves state-of-the-art results on all three tasks, while demonstrating improved generalization across different datasets.

Read More cs.CV
Neural network-based Godunov corre…
Updated:
March 17, 2025
0
0
External Public

The Riemann problem is fundamental in the computational modeling of hyperbolic partial differential equations, enabling the development of stable and accurate upwind schemes. While exact solvers provide robust upwinding fluxes, their high computational cost necessitates approximate solvers. Although approximate solvers achieve accuracy in many scenarios, they produce inaccurate solutions in certain cases. To overcome this limitation, we propose constructing neural network-based surrogate models, trained using supervised learning, designed to map interior and exterior conservative state variables to the corresponding exact flux. Specifically, we propose two distinct approaches: one utilizing a vanilla neural network and the other employing a bi-fidelity neural network. The performance of the proposed approaches is demonstrated through applications to one-dimensional and two-dimensional partial differential equations, showcasing their robustness and accuracy.

Read More math.NA cs.LG More categories
Gradient Extrapolation for Debiase…
Updated:
March 17, 2025
0
0
External Public

Machine learning classification models trained with empirical risk minimization (ERM) often inadvertently rely on spurious correlations. When absent in the test data, these unintended associations between non-target attributes and target labels lead to poor generalization. This paper addresses this problem from a model optimization perspective and proposes a novel method, Gradient Extrapolation for Debiased Representation Learning (GERNE), designed to learn debiased representations in both known and unknown attribute training cases. GERNE uses two distinct batches with different amounts of spurious correlations to define the target gradient as the linear extrapolation of two gradients computed from each batch's loss. It is demonstrated that the extrapolated gradient, if directed toward the gradient of the batch with fewer amount of spurious correlation, can guide the training process toward learning a debiased model. GERNE can serve as a general framework for debiasing with methods, such as ERM, reweighting, and resampling, being shown as special cases. The theoretical upper and lower bounds of the extrapolation factor are derived to ensure convergence. By adjusting this factor, GERNE can be adapted to maximize the Group-Balanced Accuracy (GBA) or the Worst-Group Accuracy. The proposed approach is validated on five vision and one NLP benchmarks, demonstrating competitive and often superior performance compared to state-of-the-art baseline methods.

Read More cs.LG cs.CV
Mind the Gap: Confidence Discrepan…
Updated:
March 17, 2025
0
0
External Public

Federated Semi-Supervised Learning (FSSL) aims to leverage unlabeled data across clients with limited labeled data to train a global model with strong generalization ability. Most FSSL methods rely on consistency regularization with pseudo-labels, converting predictions from local or global models into hard pseudo-labels as supervisory signals. However, we discover that the quality of pseudo-label is largely deteriorated by data heterogeneity, an intrinsic facet of federated learning. In this paper, we study the problem of FSSL in-depth and show that (1) heterogeneity exacerbates pseudo-label mismatches, further degrading model performance and convergence, and (2) local and global models' predictive tendencies diverge as heterogeneity increases. Motivated by these findings, we propose a simple and effective method called Semi-supervised Aggregation for Globally-Enhanced Ensemble (SAGE), that can flexibly correct pseudo-labels based on confidence discrepancies. This strategy effectively mitigates performance degradation caused by incorrect pseudo-labels and enhances consensus between local and global models. Experimental results demonstrate that SAGE outperforms existing FSSL methods in both performance and convergence. Our code is available at https://github.com/Jay-Codeman/SAGE

Read More cs.LG cs.CV
ProDiF: Protecting Domain-Invarian…
Updated:
March 17, 2025
18
0
External Public

Pre-trained models are valuable intellectual property, capturing both domain-specific and domain-invariant features within their weight spaces. However, model extraction attacks threaten these assets by enabling unauthorized source-domain inference and facilitating cross-domain transfer via the exploitation of domain-invariant features. In this work, we introduce **ProDiF**, a novel framework that leverages targeted weight space manipulation to secure pre-trained models against extraction attacks. **ProDiF** quantifies the transferability of filters and perturbs the weights of critical filters in unsecured memory, while preserving actual critical weights in a Trusted Execution Environment (TEE) for authorized users. A bi-level optimization further ensures resilience against adaptive fine-tuning attacks. Experimental results show that **ProDiF** reduces source-domain accuracy to near-random levels and decreases cross-domain transferability by 74.65\%, providing robust protection for pre-trained models. This work offers comprehensive protection for pre-trained DNN models and highlights the potential of weight space manipulation as a novel approach to model security.

Read More cs.CR cs.LG
Dense Policy: Bidirectional Autore…
Updated:
March 17, 2025
33
3
External Public

Mainstream visuomotor policies predominantly rely on generative models for holistic action prediction, while current autoregressive policies, predicting the next token or chunk, have shown suboptimal results. This motivates a search for more effective learning methods to unleash the potential of autoregressive policies for robotic manipulation. This paper introduces a bidirectionally expanded learning approach, termed Dense Policy, to establish a new paradigm for autoregressive policies in action prediction. It employs a lightweight encoder-only architecture to iteratively unfold the action sequence from an initial single frame into the target sequence in a coarse-to-fine manner with logarithmic-time inference. Extensive experiments validate that our dense policy has superior autoregressive learning capabilities and can surpass existing holistic generative policies. Our policy, example data, and training code will be publicly available upon publication. Project page: https: //selen-suyue.github.io/DspNet/.

Read More cs.RO cs.CV cs.LG
MedLoRD: A Medical Low-Resource Di…
Updated:
March 17, 2025
0
0
External Public

Advancements in AI for medical imaging offer significant potential. However, their applications are constrained by the limited availability of data and the reluctance of medical centers to share it due to patient privacy concerns. Generative models present a promising solution by creating synthetic data as a substitute for real patient data. However, medical images are typically high-dimensional, and current state-of-the-art methods are often impractical for computational resource-constrained healthcare environments. These models rely on data sub-sampling, raising doubts about their feasibility and real-world applicability. Furthermore, many of these models are evaluated on quantitative metrics that alone can be misleading in assessing the image quality and clinical meaningfulness of the generated images. To address this, we introduce MedLoRD, a generative diffusion model designed for computational resource-constrained environments. MedLoRD is capable of generating high-dimensional medical volumes with resolutions up to 512$\times$512$\times$256, utilizing GPUs with only 24GB VRAM, which are commonly found in standard desktop workstations. MedLoRD is evaluated across multiple modalities, including Coronary Computed Tomography Angiography and Lung Computed Tomography datasets. Extensive evaluations through radiological evaluation, relative regional volume analysis, adherence to conditional masks, and downstream tasks show that MedLoRD generates high-fidelity images closely adhering to segmentation mask conditions, surpassing the capabilities of current state-of-the-art generative models for medical image synthesis in computational resource-constrained environments.

Read More cs.CV cs.AI
DynSTG-Mamba: Dynamic Spatio-Tempo…
Updated:
March 17, 2025
0
0
External Public

Gait disorder recognition plays a crucial role in the early diagnosis and monitoring of movement disorders. Existing approaches, including spatio-temporal graph convolutional networks (ST-GCNs), often face high memory demands and struggle to capture complex spatio-temporal dependencies, limiting their efficiency in clinical applications. To address these challenges, we introduce DynSTG-Mamba (Dynamic Spatio-Temporal Graph Mamba), a novel framework that combines DF-STGNN and STG-Mamba to enhance motion sequence modeling. The DF-STGNN incorporates a dynamic spatio-temporal filter that adaptively adjusts spatial connections between skeletal joints and temporal interactions across different movement phases. This approach ensures better feature propagation through dynamic graph structures by considering the hierarchical nature and dynamics of skeletal gait data. Meanwhile, STG-Mamba, an extension of Mamba adapted for skeletal motion data, ensures a continuous propagation of states, facilitating the capture of long-term dependencies while reducing computational complexity. To reduce the number of model parameters and computational costs while maintaining consistency, we propose Cross-Graph Relational Knowledge Distillation, a novel knowledge transfer mechanism that aligns relational information between teacher (large architecture) and student models (small architecture) while using shared memory. This ensures that the interactions and movement patterns of the joints are accurately preserved in the motion sequences. We validate our DynSTG-Mamba on KOA-NM, PD-WALK, and ATAXIA datasets, where it outperforms state-of-the-art approaches by achieving in terms of Accuracy, F1-score, and Recall. Our results highlight the efficiency and robustness of our approach, offering a lightweight yet highly accurate solution for automated gait analysis and movement disorder assessment.

Read More cs.CV
DehazeMamba: SAR-guided Optical Re…
Updated:
March 17, 2025
0
0
External Public

Optical remote sensing image dehazing presents significant challenges due to its extensive spatial scale and highly non-uniform haze distribution, which traditional single-image dehazing methods struggle to address effectively. While Synthetic Aperture Radar (SAR) imagery offers inherently haze-free reference information for large-scale scenes, existing SAR-guided dehazing approaches face two critical limitations: the integration of SAR information often diminishes the quality of haze-free regions, and the instability of feature quality further exacerbates cross-modal domain shift. To overcome these challenges, we introduce DehazeMamba, a novel SAR-guided dehazing network built on a progressive haze decoupling fusion strategy. Our approach incorporates two key innovations: a Haze Perception and Decoupling Module (HPDM) that dynamically identifies haze-affected regions through optical-SAR difference analysis, and a Progressive Fusion Module (PFM) that mitigates domain shift through a two-stage fusion process based on feature quality assessment. To facilitate research in this domain, we present MRSHaze, a large-scale benchmark dataset comprising 8,000 pairs of temporally synchronized, precisely geo-registered SAR-optical images with high resolution and diverse haze conditions. Extensive experiments demonstrate that DehazeMamba significantly outperforms state-of-the-art methods, achieving a 0.73 dB improvement in PSNR and substantial enhancements in downstream tasks such as semantic segmentation. The dataset is available at https://github.com/mmic-lcl/Datasets-and-benchmark-code.

Read More cs.CV eess.IV
MaskSDM with Shapley values to imp…
Updated:
March 17, 2025
0
0
External Public

Species Distribution Models (SDMs) play a vital role in biodiversity research, conservation planning, and ecological niche modeling by predicting species distributions based on environmental conditions. The selection of predictors is crucial, strongly impacting both model accuracy and how well the predictions reflect ecological patterns. To ensure meaningful insights, input variables must be carefully chosen to match the study objectives and the ecological requirements of the target species. However, existing SDMs, including both traditional and deep learning-based approaches, often lack key capabilities for variable selection: (i) flexibility to choose relevant predictors at inference without retraining; (ii) robustness to handle missing predictor values without compromising accuracy; and (iii) explainability to interpret and accurately quantify each predictor's contribution. To overcome these limitations, we introduce MaskSDM, a novel deep learning-based SDM that enables flexible predictor selection by employing a masked training strategy. This approach allows the model to make predictions with arbitrary subsets of input variables while remaining robust to missing data. It also provides a clearer understanding of how adding or removing a given predictor affects model performance and predictions. Additionally, MaskSDM leverages Shapley values for precise predictor contribution assessments, improving upon traditional approximations. We evaluate MaskSDM on the global sPlotOpen dataset, modeling the distributions of 12,738 plant species. Our results show that MaskSDM outperforms imputation-based methods and approximates models trained on specific subsets of variables. These findings underscore MaskSDM's potential to increase the applicability and adoption of SDMs, laying the groundwork for developing foundation models in SDMs that can be readily applied to diverse ecological applications.

Read More cs.LG cs.CV
Concept-as-Tree: Synthetic Data is…
Updated:
March 17, 2025
62
0
External Public

Vision-Language Models (VLMs) have demonstrated exceptional performance in various multi-modal tasks. Recently, there has been an increasing interest in improving the personalization capabilities of VLMs. To better integrate user-provided concepts into VLMs, many methods use positive and negative samples to fine-tune these models. However, the scarcity of user-provided positive samples and the low quality of retrieved negative samples pose challenges for fine-tuning. To reveal the relationship between sample and model performance, we systematically investigate the impact of positive and negative samples (easy and hard) and their diversity on VLM personalization tasks. Based on the detailed analysis, we introduce Concept-as-Tree (CaT), which represents a concept as a tree structure, thereby enabling the data generation of positive and negative samples with varying difficulty and diversity for VLM personalization. With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data, constituting a powerful pipeline. We perform thorough experiments with various VLM personalization baselines to assess the effectiveness of the pipeline, alleviating the lack of positive samples and the low quality of negative samples. Our results demonstrate that CaT equipped with the proposed data filter significantly enhances the personalization capabilities of VLMs across the MyVLM, Yo'LLaVA, and MC-LLaVA datasets. To our knowledge, this work is the first controllable synthetic data pipeline for VLM personalization. The code is released at \href{https://github.com/zengkaiya/CaT}{https://github.com/zengkaiya/CaT}.

Read More cs.CV cs.AI
Analyzing Swimming Performance Usi…
Updated:
March 17, 2025
0
0
External Public

Monitoring swimmer performance is crucial for improving training and enhancing athletic techniques. Traditional methods for tracking swimmers, such as above-water and underwater cameras, face limitations due to the need for multiple cameras and obstructions from water splashes. This paper presents a novel approach for tracking swimmers using a moving UAV. The proposed system employs a UAV equipped with a high-resolution camera to capture aerial footage of the swimmers. The footage is then processed using computer vision algorithms to extract the swimmers' positions and movements. This approach offers several advantages, including single camera use and comprehensive coverage. The system's accuracy is evaluated with both training and in competition videos. The results demonstrate the system's ability to accurately track swimmers' movements, limb angles, stroke duration and velocity with the maximum error of 0.3 seconds and 0.35~m/s for stroke duration and velocity, respectively.

Read More cs.CV cs.HC
GIFT: Generated Indoor video frame…
Updated:
March 17, 2025
42
0
External Public

Point tracking is becoming a powerful solver for motion estimation and video editing. Compared to classical feature matching, point tracking methods have the key advantage of robustly tracking points under complex camera motion trajectories and over extended periods. However, despite certain improvements in methodologies, current point tracking methods still struggle to track any position in video frames, especially in areas that are texture-less or weakly textured. In this work, we first introduce metrics for evaluating the texture intensity of a 3D object. Using these metrics, we classify the 3D models in ShapeNet into three levels of texture intensity and create GIFT, a challenging synthetic benchmark comprising 1800 indoor video sequences with rich annotations. Unlike existing datasets that assign ground truth points arbitrarily, GIFT precisely anchors ground truth on classified target objects, ensuring that each video corresponds to a specific texture intensity level. Furthermore, we comprehensively evaluate current methods on GIFT to assess their performance across different texture intensity levels and analyze the impact of texture on point tracking.

Read More cs.CV
Augmented Invertible Koopman Autoe…
Updated:
March 17, 2025
0
0
External Public

Following the introduction of Dynamic Mode Decomposition and its numerous extensions, many neural autoencoder-based implementations of the Koopman operator have recently been proposed. This class of methods appears to be of interest for modeling dynamical systems, either through direct long-term prediction of the evolution of the state or as a powerful embedding for downstream methods. In particular, a recent line of work has developed invertible Koopman autoencoders (IKAEs), which provide an exact reconstruction of the input state thanks to their analytically invertible encoder, based on coupling layer normalizing flow models. We identify that the conservation of the dimension imposed by the normalizing flows is a limitation for the IKAE models, and thus we propose to augment the latent state with a second, non-invertible encoder network. This results in our new model: the Augmented Invertible Koopman AutoEncoder (AIKAE). We demonstrate the relevance of the AIKAE through a series of long-term time series forecasting experiments, on satellite image time series as well as on a benchmark involving predictions based on a large lookback window of observations.

Read More cs.LG stat.ML
Early Detection of Forest Calamiti…
Updated:
March 17, 2025
0
0
External Public

Climate change has increased the vulnerability of forests to insect-related damage, resulting in widespread forest loss in Central Europe and highlighting the need for effective, continuous monitoring systems. Remote sensing based forest health monitoring, oftentimes, relies on supervised machine learning algorithms that require labeled training data. Monitoring temporal patterns through time series analysis offers a potential alternative for earlier detection of disturbance but requires substantial storage resources. This study investigates the potential of a Deep Learning algorithm based on a Long Short Term Memory (LSTM) Autoencoder for the detection of anomalies in forest health (e.g. bark beetle outbreaks), utilizing Sentinel-2 time series data. This approach is an alternative to supervised machine learning methods, avoiding the necessity for labeled training data. Furthermore, it is more memory-efficient than other time series analysis approaches, as a robust model can be created using only a 26-week-long time series as input. In this study, we monitored pure stands of spruce in Thuringia, Germany, over a 7-year period from 2018 to the end of 2024. Our best model achieved a detection accuracy of 87% on test data and was able to detect 61% of all anomalies at a very early stage (more than a month before visible signs of forest degradation). Compared to another widely used time series break detection algorithm - BFAST (Breaks For Additive Season and Trend), our approach consistently detected higher percentage of anomalies at an earlier stage. These findings suggest that LSTM-based Autoencoders could provide a promising, resource-efficient approach to forest health monitoring, enabling more timely responses to emerging threats.

Read More cs.LG
An interpretable approach to autom…
Updated:
March 17, 2025
26
0
External Public

Biofouling$\unicode{x2013}$communities of organisms that grow on hard surfaces immersed in water$\unicode{x2013}$provides a pathway for the spread of invasive marine species and diseases. To address this risk, international vessels are increasingly being obligated to provide evidence of their biofouling management practices. Verification that these activities are effective requires underwater inspections, using divers or underwater remotely operated vehicles (ROVs), and the collection and analysis of large amounts of imagery and footage. Automated assessment using computer vision techniques can significantly streamline this process, and this work shows how this challenge can be addressed efficiently and effectively using the interpretable Component Features (ComFe) approach with a DINOv2 Vision Transformer (ViT) foundation model. ComFe is able to obtain improved performance in comparison to previous non-interpretable Convolutional Neural Network (CNN) methods, with significantly fewer weights and greater transparency$\unicode{x2013}$through identifying which regions of the image contribute to the classification, and which images in the training data lead to that conclusion. All code, data and model weights are publicly released.

Read More cs.CV
ACT360: An Efficient 360-Degree Ac…
Updated:
March 17, 2025
19
0
External Public

Effective training and debriefing are critical in high-stakes, mission-critical environments such as disaster response, military simulations, and industrial safety, where precision and minimizing errors are paramount. The traditional post-training analysis relies on manually reviewing 2D videos, a time-consuming process that lacks comprehensive situational awareness. To address these limitations, we introduce ACT360, a system that leverages 360-degree videos and machine learning for automated action detection and structured debriefing. ACT360 integrates 360YOWO, an enhanced You Only Watch Once (YOWO) model with spatial attention and equirectangular-aware convolution (EAC) to mitigate panoramic video distortions. To enable deployment in resource-constrained environments, we apply quantization and model pruning, reducing the model size by 74% while maintaining robust accuracy (mAP drop of only 1.5%, from 0.865 to 0.850) and improving inference speed. We validate our approach on a publicly available dataset of 55 labeled 360-degree videos covering seven key operational actions, recorded across various real-world training sessions and environmental conditions. Additionally, ACT360 integrates 360AIE (Action Insight Explorer), a web-based interface for automatic action detection, retrieval, and textual summarization using large language models (LLMs), significantly enhancing post-incident analysis efficiency. ACT360 serves as a generalized framework for mission-critical debriefing, incorporating EAC, spatial attention, summarization, and model optimization. These innovations apply to any training environment requiring lightweight action detection and structured post-exercise analysis.

Read More cs.CV cs.MM
Navigating Heat Exposure: Simulati…
Updated:
March 17, 2025
11
0
External Public

Heat exposure significantly influences pedestrian routing behaviors. Existing methods such as agent-based modeling (ABM) and empirical measurements fail to account for individual physiological variations and environmental perception mechanisms under thermal stress. This results in a lack of human-centred, heat-adaptive routing suggestions. To address these limitations, we propose a novel Vision Language Model (VLM)-driven Persona-Perception-Planning-Memory (PPPM) framework that integrating street view imagery and urban network topology to simulate heat-adaptive pedestrian routing. Through structured prompt engineering on Gemini-2.0 model, eight distinct heat-sensitive personas were created to model mobility behaviors during heat exposure, with empirical validation through questionnaire survey. Results demonstrate that simulation outputs effectively capture inter-persona variations, achieving high significant congruence with observed route preferences and highlighting differences in the factors driving agents decisions. Our framework is highly cost-effective, with simulations costing 0.006USD and taking 47.81s per route. This Artificial Intelligence-Generated Content (AIGC) methodology advances urban climate adaptation research by enabling high-resolution simulation of thermal-responsive mobility patterns, providing actionable insights for climate-resilient urban planning.

Read More cs.CV
Domain Generalization for Improved…
Updated:
March 16, 2025
49
0
External Public

Automatic video activity recognition is crucial across numerous domains like surveillance, healthcare, and robotics. However, recognizing human activities from video data becomes challenging when training and test data stem from diverse domains. Domain generalization, adapting to unforeseen domains, is thus essential. This paper focuses on office activity recognition amidst environmental variability. We propose three pre-processing techniques applicable to any video encoder, enhancing robustness against environmental variations. Our study showcases the efficacy of MViT, a leading state-of-the-art video classification model, and other video encoders combined with our techniques, outperforming state-of-the-art domain adaptation methods. Our approach significantly boosts accuracy, precision, recall and F1 score on unseen domains, emphasizing its adaptability in real-world scenarios with diverse video data sources. This method lays a foundation for more reliable video activity recognition systems across heterogeneous data domains.

Read More cs.CV
Scaling Semantic Categories: Inves…
Updated:
March 16, 2025
2
0
External Public

This study explores the impact of scaling semantic categories on the image classification performance of vision transformers (ViTs). In this specific case, the CLIP server provided by Jina AI is used for experimentation. The research hypothesizes that as the number of ground truth and artificially introduced semantically equivalent categories increases, the labeling accuracy of ViTs improves until a theoretical maximum or limit is reached. A wide variety of image datasets were chosen to test this hypothesis. These datasets were processed through a custom function in Python designed to evaluate the model's accuracy, with adjustments being made to account for format differences between datasets. By exponentially introducing new redundant categories, the experiment assessed accuracy trends until they plateaued, decreased, or fluctuated inconsistently. The findings show that while semantic scaling initially increases model performance, the benefits diminish or reverse after surpassing a critical threshold, providing insight into the limitations and possible optimization of category labeling strategies for ViTs.

Read More cs.CV cs.AI cs.LG
Fourier-Based 3D Multistage Transf…
Updated:
March 16, 2025
0
0
External Public

High-resolution tissue imaging is often compromised by sample-induced optical aberrations that degrade resolution and contrast. While wavefront sensor-based adaptive optics (AO) can measure these aberrations, such hardware solutions are typically complex, expensive to implement, and slow when serially mapping spatially varying aberrations across large fields of view. Here, we introduce AOViFT (Adaptive Optical Vision Fourier Transformer) -- a machine learning-based aberration sensing framework built around a 3D multistage Vision Transformer that operates on Fourier domain embeddings. AOViFT infers aberrations and restores diffraction-limited performance in puncta-labeled specimens with substantially reduced computational cost, training time, and memory footprint compared to conventional architectures or real-space networks. We validated AOViFT on live gene-edited zebrafish embryos, demonstrating its ability to correct spatially varying aberrations using either a deformable mirror or post-acquisition deconvolution. By eliminating the need for the guide star and wavefront sensing hardware and simplifying the experimental workflow, AOViFT lowers technical barriers for high-resolution volumetric microscopy across diverse biological samples.

Read More eess.IV cs.AI More categories
PEBench: A Fictitious Dataset to B…
Updated:
March 16, 2025
0
0
External Public

In recent years, Multimodal Large Language Models (MLLMs) have demonstrated remarkable advancements in tasks such as visual question answering, visual understanding, and reasoning. However, this impressive progress relies on vast amounts of data collected from the internet, raising significant concerns about privacy and security. To address these issues, machine unlearning (MU) has emerged as a promising solution, enabling the removal of specific knowledge from an already trained model without requiring retraining from scratch. Although MU for MLLMs has gained attention, current evaluations of its efficacy remain incomplete, and the underlying problem is often poorly defined, which hinders the development of strategies for creating more secure and trustworthy systems. To bridge this gap, we introduce a benchmark, named PEBench, which includes a dataset of personal entities and corresponding general event scenes, designed to comprehensively assess the performance of MU for MLLMs. Through PEBench, we aim to provide a standardized and robust framework to advance research in secure and privacy-preserving multimodal models. We benchmarked 6 MU methods, revealing their strengths and limitations, and shedding light on key challenges and opportunities for MU in MLLMs.

Read More cs.CV
Towards Suturing World Models: Lea…
Updated:
March 16, 2025
16
0
External Public

We introduce specialized diffusion-based generative models that capture the spatiotemporal dynamics of fine-grained robotic surgical sub-stitch actions through supervised learning on annotated laparoscopic surgery footage. The proposed models form a foundation for data-driven world models capable of simulating the biomechanical interactions and procedural dynamics of surgical suturing with high temporal fidelity. Annotating a dataset of $\sim2K$ clips extracted from simulation videos, we categorize surgical actions into fine-grained sub-stitch classes including ideal and non-ideal executions of needle positioning, targeting, driving, and withdrawal. We fine-tune two state-of-the-art video diffusion models, LTX-Video and HunyuanVideo, to generate high-fidelity surgical action sequences at $\ge$768x512 resolution and $\ge$49 frames. For training our models, we explore both Low-Rank Adaptation (LoRA) and full-model fine-tuning approaches. Our experimental results demonstrate that these world models can effectively capture the dynamics of suturing, potentially enabling improved training simulators, surgical skill assessment tools, and autonomous surgical systems. The models also display the capability to differentiate between ideal and non-ideal technique execution, providing a foundation for building surgical training and evaluation systems. We release our models for testing and as a foundation for future research. Project Page: https://mkturkcan.github.io/suturingmodels/

Read More cs.CV
MPBench: A Comprehensive Multimoda…
Updated:
March 16, 2025
0
0
External Public

Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, where the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answer Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.

Read More cs.AI cs.CV
Does Your Vision-Language Model Ge…
Updated:
March 16, 2025
43
0
External Public

The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain.

Read More cs.CV
BS-Mamba for Black-Soil Area Detec…
Updated:
March 16, 2025
0
0
External Public

Extremely degraded grassland on the Qinghai-Tibetan Plateau (QTP) presents a significant environmental challenge due to overgrazing, climate change, and rodent activity, which degrade vegetation cover and soil quality. These extremely degraded grassland on QTP, commonly referred to as black-soil area, require accurate assessment to guide effective restoration efforts. In this paper, we present a newly created QTP black-soil dataset, annotated under expert guidance. We introduce a novel neural network model, BS-Mamba, specifically designed for the black-soil area detection using UAV remote sensing imagery. The BS-Mamba model demonstrates higher accuracy in identifying black-soil area across two independent test datasets than the state-of-the-art models. This research contributes to grassland restoration by providing an efficient method for assessing the extent of black-soil area on the QTP.

Read More cs.CV
Modeling ice cliff stability using…
Updated:
March 16, 2025
10
2
External Public

Iceberg calving at glacier termini results in mass loss from ice sheets, but the associated fracture mechanics is often poorly represented using simplistic (empirical or elementary mechanics-based) failure criteria. Here, we propose an advanced Mohr-Coulomb failure criterion that drives cracking based on the visco-elastic stress state in ice. This criterion is implemented in a phase field fracture framework, and finite element simulations are conducted to determine the critical conditions that can trigger ice cliff collapse. Results demonstrate that fast-moving glaciers with negligible basal friction are prone to tensile failure causing crevasse propagation far away from the ice front; whilst slow-moving glaciers with significant basal friction are likely to exhibit shear failure near the ice front. Results also indicate that seawater pressure plays a major role in modulating cliff failure. For land terminating glaciers, full thickness cliff failure is observed if the glacier exceeds a critical height, dependent on cohesive strength $\tau_\mathrm{c}$ ($H \approx 120\;\text{m}$ for $\tau_\mathrm{c}=0.5\;\text{MPa}$). For marine-terminating glaciers, ice cliff failure occurs if a critical glacier free-board ($H-h_\mathrm{w}$) is exceeded, with ice slumping only observed above the ocean-water height; for $\tau_\mathrm{c} = 0.5\;\text{MPa}$, the model-predicted critical free-board is $H-h_\mathrm{w} \approx 215\;\text{m}$, which is in good agreement with field observations. While the critical free-board height is larger than that predicted by some previous models, we cannot conclude that marine ice cliff instability is less likely because we do not include other failure processes such as hydrofracture of basal crevasses and plastic necking.

Read More cs.CE physics.geo-ph
A Causality-Inspired Model for Int…
Updated:
March 16, 2025
26
0
External Public

Carotid atherosclerosis represents a significant health risk, with its early diagnosis primarily dependent on ultrasound-based assessments of carotid intima-media thickening. However, during carotid ultrasound screening, significant view variations cause style shifts, impairing content cues related to thickening, such as lumen anatomy, which introduces spurious correlations that hinder assessment. Therefore, we propose a novel causal-inspired method for assessing carotid intima-media thickening in frame-wise ultrasound videos, which focuses on two aspects: eliminating spurious correlations caused by style and enhancing causal content correlations. Specifically, we introduce a novel Spurious Correlation Elimination (SCE) module to remove non-causal style effects by enforcing prediction invariance with style perturbations. Simultaneously, we propose a Causal Equivalence Consolidation (CEC) module to strengthen causal content correlation through adversarial optimization during content randomization. Simultaneously, we design a Causal Transition Augmentation (CTA) module to ensure smooth causal flow by integrating an auxiliary pathway with text prompts and connecting it through contrastive learning. The experimental results on our in-house carotid ultrasound video dataset achieved an accuracy of 86.93\%, demonstrating the superior performance of the proposed method. Code is available at \href{https://github.com/xielaobanyy/causal-imt}{https://github.com/xielaobanyy/causal-imt}.

Read More cs.CV
SAM2-ELNet: Label Enhancement and …
Updated:
March 16, 2025
60
0
External Public

Remote sensing image segmentation is crucial for environmental monitoring, disaster assessment, and resource management, directly affecting the accuracy and efficiency of surface information extraction. The performance of existing supervised models in remote sensing image segmentation tasks highly depends on the quality of label data. However, current label data mainly relies on manual annotation, which comes with high time costs and is subject to subjective interference, resulting in distortion of label boundaries and often a loss of detail. To solve the above problems, our work proposes an Edge-enhanced Labeling Network, called SAM2-ELNet, which incorporates a labeling module and an edge attention mechanism. This model effectively addresses issues such as label detail loss, fragmentation, and inaccurate boundaries. Due to the scarcity of manually annotated remote sensing data, the feature extraction capabilities of traditional neural networks are limited. Our method uses the Hiera backbone of the pre-trained self-supervised large model segment anything model 2 (SAM2) as the encoder, achieves high-quality and efficient feature extraction even with small samples by fine-tuning on downstream tasks. This study compared the training effects of original and enhanced labels on the manually annotated Deep-SAR Oil Spill (SOS) dataset. Results showed that the model trained with enhanced labels performed better and had a lower final loss, indicating closer alignment with the real data distribution. Our work also explores the potential of extending the model into an efficient automatic annotation framework through generalization experiments, facilitating large-scale remote sensing image interpretation and intelligent recognition.

Read More cs.CV
ResLPR: A LiDAR Data Restoration N…
Updated:
March 16, 2025
0
0
External Public

LiDAR-based place recognition (LPR) is a key component for autonomous driving, and its resilience to environmental corruption is critical for safety in high-stakes applications. While state-of-the-art (SOTA) LPR methods perform well in clean weather, they still struggle with weather-induced corruption commonly encountered in driving scenarios. To tackle this, we propose ResLPRNet, a novel LiDAR data restoration network that largely enhances LPR performance under adverse weather by restoring corrupted LiDAR scans using a wavelet transform-based network. ResLPRNet is efficient, lightweight and can be integrated plug-and-play with pretrained LPR models without substantial additional computational cost. Given the lack of LPR datasets under adverse weather, we introduce ResLPR, a novel benchmark that examines SOTA LPR methods under a wide range of LiDAR distortions induced by severe snow, fog, and rain conditions. Experiments on our proposed WeatherKITTI and WeatherNCLT datasets demonstrate the resilience and notable gains achieved by using our restoration method with multiple LPR approaches in challenging weather scenarios. Our code and benchmark are publicly available here: https://github.com/nubot-nudt/ResLPR.

Read More cs.CV
Carbon capture capacity estimation…
Updated:
March 16, 2025
0
0
External Public

Canada's northern boreal has considerable potential for tree planting related climate change mitigation solutions, considering the sparsity of trees and large portions of non-forested land at the northern forest edge. Moreover, afforestation at the northern boreal edge would enable further the observed gradual tree-line advancement of the taiga into the southern arctic, assisting forests in their migration northward while capitalizing on their carbon capture capacity. However, significant uncertainties remain about the carbon capture capacity of large-scale tree planting in the northern boreal ecozones under changing climatic conditions due to lack of spatially explicit ecozone specific modeling. In this paper, we provide monte carlo estimates of carbon capture capacity of taiga reforestation and afforestation at the north-western boreal edge using spatially explicit carbon budget modeling. We combine satellite-based forest inventory data and probabilistic fire regime representations to simulate how total ecosystem carbon (TEC) might evolve from 2025 until 2100 under different scenarios composed of fire return intervals (FRI), historical land classes, planting mortality, and climatic variables. Our findings suggest that afforestation at the north-western boreal edge could provide meaningful carbon sequestration toward Canada's climate targets, potentially storing approximately 3.88G Tonnes of $CO_{2}$e over the next 75 years in the average case resulting from afforestation on approximately 6.4M hectares, with the Northwest Territories (NT)-Taiga Shield West (TSW) zone showing the most potential. Further research is needed to refine these estimates using improved modeling, study economic viability of such a project, and investigate the impact on other regional processes such as permafrost thaw, energy fluxes, and albedo feedbacks.

Read More physics.comp-ph physics.geo-ph q-bio.PE
Integrating Product Coefficients f…
Updated:
March 15, 2025
33
9
External Public

In this paper, we address the enhancement of classification accuracy for 3D point cloud Lidar data, an optical remote sensing technique that estimates the three-dimensional coordinates of a given terrain. Our approach introduces product coefficients, theoretical quantities derived from measure theory, as additional features in the classification process. We define and present the formulation of these product coefficients and conduct a comparative study, using them alongside principal component analysis (PCA) as feature inputs. Results demonstrate that incorporating product coefficients into the feature set significantly improves classification accuracy within this new framework.

Read More cs.LG cs.CV More categories
Mitigating Bad Ground Truth in Sup…
Updated:
March 14, 2025
0
0
External Public

In agricultural management, precise Ground Truth (GT) data is crucial for accurate Machine Learning (ML) based crop classification. Yet, issues like crop mislabeling and incorrect land identification are common. We propose a multi-level GT cleaning framework while utilizing multi-temporal Sentinel-2 data to address these issues. Specifically, this framework utilizes generating embeddings for farmland, clustering similar crop profiles, and identification of outliers indicating GT errors. We validated clusters with False Colour Composite (FCC) checks and used distance-based metrics to scale and automate this verification process. The importance of cleaning the GT data became apparent when the models were trained on the clean and unclean data. For instance, when we trained a Random Forest model with the clean GT data, we achieved upto 70\% absolute percentage points higher for the F1 score metric. This approach advances crop classification methodologies, with potential for applications towards improving loan underwriting and agricultural decision-making.

Read More cs.CV cs.AI cs.LG
Industrial Applications of Neutrin…
Updated:
March 5, 2025
18
0
External Public

We present a review of the current and future industrial applications of neutrinos. We address the industrial applications of neutrinos in geological and geochemical studies of the Earth's interior, in monitoring earthquakes, in terrestrial communications, in applications for submarines, in monitoring nuclear power plants and fusion reactors, in the management of fissile materials used in nuclear plants, in tracking nuclear tests, among other applications. We also address future possibilities for industrial applications of neutrinos, especially concerning communications in the solar system and geotomography of solar system bodies.

Read More physics.pop-ph physics.geo-ph physics.ins-det